Sains Malaysiana 54(5)(2025): 1269-1280
http://doi.org/10.17576/jsm-2025-5405-06
Interplay between
Collagen Hydrolysates and the Ability of FKBP35 from Plasmodium knowlesi in Preventing Insulin Aggregation
(Interaksi antara Kolagen Hidrolisat dan Keupayaan FKBP35 daripada Plasmodium knowlesi dalam Mencegah Pengagregatan Insulin)
NUR ILIYANA ILLANG1,
CARLMOND GOH KAH WUN1, MUHAMMAD ARIFIN2 & CAHYO
BUDIMAN1,2,*
1Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS,
88400 Kota Kinabalu, Sabah, Malaysia
2Department of Animal Production
and Technology, Faculty of Animal Sciences, IPB University, Kampus IPB Darmaga IPB Darmaga Bogort 16680, Indonesia
Received:
17 November 2023/Accepted: 10 February 2025
Abstract
FK506-binding
protein 35 (FKBP35) from Plasmodium knowlesi (Pk-FKBP35) is a potential target for
combating the surge in simian malaria cases. While previously speculated to
hinder protein synthesis aggregation within parasite cells, this study seeks to
experimentally validate the capacity of Pk-FKBP35 to avert protein aggregation.
Additionally, it aims to examine the influence of collagen hydrolysates (CH) on
this ability. Initially, Pk-FKBP35 was overexpressed in Escherichia coli BL21(DE3)
and subsequently purified. To assess its capacity for preventing aggregation, a
dithiothreitol (DTT)-induced insulin aggregation assay was conducted and
observed via SDS-PAGE. The findings showed a concentration-dependent inhibition
by Pk-FKBP35 against DTT-induced insulin aggregation. At the concentration of 0.75
mg/mL of Pk-FKBP35, the amount of soluble insulin was increased to about 5-fold
higher. Interestingly, in the presence of FK506,
Pk-FKBP35's ability to prevent insulin aggregation remains intact. Since FK506
is known to specifically bind to the catalytic domain of Pk-FKBP35, this
suggests that the region responsible for the protein's aggregation prevention
activity is independent from the catalytic domain. Moreover, when coupled with CH derived from
bovine, bone broth, fish, and swine, Pk-FKBP35's effectiveness in preventing
DTT-induced insulin aggregation was attenuated, albeit to varying degrees.
Notably, swine and bone broth CH exhibited superior inhibition of aggregation
prevention compared to bovine and fish CH. This study validates Pk-FKBP35's
capability to impede protein aggregation, showcasing a promising potential for
inhibition by CH, particularly those sourced from swine and bone broth.
Keywords:
Collagen hydrolysate; FKBP35; peptidyl-prolyl cis-trans isomerase (PPIase); Plasmodium knowlesi;
zoonotic malaria
Abstrak
Protein
pengikat-FK506 daripada Plasmodium knowlesi (Pk-FKBP35) dipercayai berpotensi untuk dibangunkan sebagai ubat anti-malaria bagi melawan kes zoonotik malaria yang semakin membimbangkan. Walaupun sebelum ini dikatakan dapat menghalang penggumpalan semasa sintesis protein dalam sel parasit, kajian ini bertujuan untuk mengesahkan secara uji kaji keupayaan Pk-FKBP35 untuk mencegah penggumpalan protein. Selain itu, kajian ini juga bertujuan untuk meneliti pengaruh hidrolisat kolagen (CH) terhadap keupayaan tersebut. Dengan itu, Pk-FKBP35 diekspresikan secara berlebihan di dalam E. coli (BL21) dan ditulenkan. Keupayaan menghalang penggumpalan protein diperhatikan menggunakan insulin sebagai model substrat yang dinyahaslikan menggunakan ditiotreitol (DTT) dan dipantau secara visual melalui elektroforesis gel natrium dodesil sulfat-poliakrilamida (SDS-PAGE). Keputusan menunjukkan bahawa Pk-FKBP35 berupaya menghalang penggumpalan insulin secara kebergantungan kepekatan. Bilangan insulin yang larut meningkat lima kali ganda dengan kehadiran 0.75 mg/mL
Pk-FKBP35. Menariknya, kehadiran FK506 tidak menjejaskan kemampuan Pk-FKBP35 untuk mencegahpenggumpalan insulin. Memandangkan FK506 diketahui melekat secara khas pada domain katalitik Pk-FKBP35, ini menunjukkan bahawa kawasan yang bertanggungjawab untuk aktiviti pencegahanpenggumpalan protein adalah berasingan daripada domain katalitik tersebut. Dalam masa yang sama, kehadiran CH daripada lembu, tulang, ikan dan khinzir berupaya mengurangkan pencegahan penggumpalan insulin
yang dinyahaslikan menggunakan DTT dengan kadar yang berbeza. CH khinzir dan tulang mencegah keupayaan Pk-FKBP35 lebih baik berbanding CH daging dan ikan. Kajian ini membuktikan Pk-FKBP35 mempunyai keupayaan mencegah penggumpalan protein dan keupayaan ini boleh direncatkan dengan kehadiran CH.
Kata kunci: FKBP35; hidrolisat kolagen; isomerase cis-trans peptidil-prolil (PPIase); Plasmodium knowlesi; zoonotik malaria
REFERENCES
Adiyoga, R., Arief, I.I., Budiman, C. & Abidin, Z.
2022. In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. Food Science and
Technology 42: e87221.
Afiyah, D.N., Arief, I.I. & Budiman, C. 2015. Proteolytic characterization of trimmed
beef fermented sausages inoculated by Indonesian probiotics: Lactobacillus
plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4. Advance
Journal of Food Science and Technology 1: 27-35.
Alag, R., Balakrishna, A.M., Rajan, S.,
Qureshi, I.A., Shin, J., Lescar, J., Grüber, G. & Yoon, H.S. 2013. Structural insights into
substrate binding by Pv FKBP35, a peptidylprolyl
cis-trans isomerase from the human malarial parasite Plasmodium
vivax. Eukaryotic Cell 12(4): 627-634.
Alag, R., Qureshi, I.A., Bharatham, N.,
Shin, J., Lescar, J. & Yoon, H.S. 2010. NMR and
crystallographic structures of the FK506 binding domain of human malarial
parasite Plasmodium vivax FKBP35. Protein Science 19(8):
1577-1586.
Amir, A., Cheong, F.W., Ryan
de Silva, J., Liew, J.W.K. & Lau, Y.L. 2018. Plasmodium knowlesi malaria: Current research perspectives. Infection
and Drug Resistance 11: 1145-1155.
Asai, T. 2020. Contents, structure, and functions of
collagen-derived peptides in human blood after ingestion of collagen
hydrolysate and gelatin. PhD Dissertation. Kyoto
University (Unpublished).
Atack, T.C., Raymond, D.D., Blomquist, C.A., Pasaje,
C.F., McCarren, P.R., Moroco, J., Befekadu,
H.B., Robinson, F.P., Pal, D., Esherick, L.Y., Ianari, A., Niles, J.C. & Sellers, W.R. 2020.
Targeted covalent inhibition of Plasmodium FK506 binding protein
35. ACS Medicinal Chemistry Letters 11(11): 2131-2138.
Bell, A., Wernli, B. & Franklin, R.M. 1994. Roles of
peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of
antimalarial action of cyclosporin A, FK506, and rapamycin. Biochemical
Pharmacology 48(3): 495-503.
Budiman, C., Bando, K., Angkawidjaja, C., Koga, Y., Takano, K. & Kanaya, S. 2009. Engineering of monomeric
FK506‐binding protein 22 with peptidyl prolyl cis‐trans isomerase:
Importance of a V‐shaped dimeric structure for binding to protein
substrate. The FEBS Journal 276(15): 4091-4101.
Budiman, C., Koga, Y., Takano, K.
& Kanaya, S. 2011. FK506-binding protein 22 from
a psychrophilic bacterium, a cold shock-inducible peptidyl prolyl isomerase
with the ability to assist in protein folding. International Journal of
Molecular Sciences 12(8): 5261-5284.
Budiman, C., Tadokoro, T., Angkawidjaja,
C., Koga, Y. & Kanaya, S. 2012. Role of polar and
nonpolar residues at the active site for PPIase activity of FKBP22 from Shewanella sp.
SIB1. The FEBS Journal 279(6): 976-986.
Budiman, C., Wun,
C.G.K., Chin, L.P., Razali, R. & Leow, T.C. 2020.
Reassessment of the catalytic activity and substrate specificity of FKBP35 from Plasmodium knowlesi using protease-free
assay. Borneo International Journal of Biotechnology (BIJB) 1:
125-143.
Bumagina, Z., Gurvits, B., Artemova, N., Muranov, K. & Kurganov, B. 2010. Paradoxical acceleration of
dithiothreitol-induced aggregation of insulin in the presence of a
chaperone. International Journal of Molecular Sciences 11(11):
4556-4579.
Chin, A.Z., Maluda, M.C.M., Jelip, J., Jeffree, M.S.B., Culleton, R. & Ahmed, K. 2020. Malaria
elimination in Malaysia and the rising threat of Plasmodium knowlesi. Journal of Physiological Anthropology 39(1):
1-9.
Chin, W., Contacos, P.G., Collins, W.E., Jeter, M.H. & Albert, E.
1968. Experimental mosquito-transmission of Plasmodium knowlesi to man and monkey. American Journal of Tropical Medicine and Hygiene 17(3):
355-358.
Das, A., Shah, M. &
Saraogi, I. 2022. Molecular aspects of insulin aggregation and various
therapeutic interventions. ACS Bio. & Med. Chem. Au. 2(3):
205-221.
Fanghanel, J. & Fischer, G. 2004. Insights into the catalytic
mechanism of peptidyl prolyl cis/trans isomerases. Front in Bioscience 9:
3453-3478.
Fatih, F.A., Staines, H.M., Siner, A.,
Ahmed, M.A., Woon, L.C., Pasini,
E.M., Kocken, C.H., Singh, B., Cox-Singh, J.
& Krishna, S. 2013. Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malaria
Journal 12: 425.
Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber,
T. & Schmid, F.X. 1989. Cyclophilin and peptidyl-prolyl cis-trans isomerase
are probably identical proteins. Nature 337(6206): 476-478.
Furutani, M., Ideno, A., Iida, T. &
Maruyama, T. 2000. FK506 binding protein from a thermophilic archaeon, Methanococcus thermolithotrophicus, has chaperone-like activity in vitro. Biochemistry 39(2):
453-462.
Ghartey-Kwansah, G., Li, Z., Feng, R., Wang, L., Zhou, X., Chen, F.Z., Xu, M.M.,
Jones, O., Mu, Y., Chen, S., Bryant, J., Isaacs, W.B., Ma, J. & Xu, X. 2018.
Comparative analysis of FKBP family protein: evaluation, structure, and
function in mammals and Drosophila melanogaster. BMC
Developmental Biology 18(1): 7.
Goh, C.K.W., Silvester, J.,
Wan Mahadi, W.N.S., Chin, L.P., Ying, L.T., Leow, T.C., Kurahashi, R.,
Takano, K. & Budiman, C. 2018. Expression and
characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Protein Engineering, Design and
Selection 31(12): 489-498.
Goodwin, T.W. & Morton,
R.A. 1946. The spectrophotometric determination of tyrosine and tryptophan in
proteins. Biochemical Journal 40(5-6): 628-632.
Hanifah, R., Arief, I.I. & Budiman, C. 2016. Antimicrobial activity of goat milk
yoghurt with addition of a probiotic Lactobacillus acidophilus IIA - 2B4
and roselle (Hibiscus sabdariffa L) extract. International Food
Research Journal 23(6): 2638-2645.
Hansen,
M.C., Potapov, P.V., Moore, R., Hancher,
M., Turubanova, S.A., Tyukavina,
A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland,
T.R., Kommareddy, A., Egorov,
A., Chini, L. & Townshend, J.R.G. 2013.
High-resolution global maps of 21st-century forest cover change. Science 342(6160):
850-853.
Helton, L.G. & Kennedy,
E.J. 2020. Targeting Plasmodium with constrained peptides and
peptidomimetics. IUBMB Life 72(6): 1103-1114.
Hua, Q.X. & Weiss, M.A.
2004. Mechanism of insulin fibrillation: The structure of insulin under
amyloidogenic conditions resembles a protein-folding intermediate. Journal
of Biological Chemistry 279(20): 21449-21460.
Huynh, K. & Partch, C.L. 2015. Analysis of protein stability and ligand
interactions by thermal shift assay. Current Protocols in Protein
Science 79(1): 28-29.
Kang, C.B., Feng, L., Chia,
J. & Yoon, H.S. 2005. Molecular characterization of FK-506 binding protein
38 and its potential regulatory role on the anti-apoptotic protein Bcl-2. Biochemical
and Biophysical Research Communications 337(1): 30-38.
Kang, C.B., Hong, Y., Dhe-Paganon, S. & Yoon, H.S. 2008. FKBP family
proteins: Immunophilins with versatile biological functions. Neurosignals 16(4): 318-325.
Kurniaty, N., Maharani, R., Hidayat, A.T.
& Supratman, U. 2023. An overview on antimalarial
peptides: Natural sources, synthetic methodology and biological
properties. Molecules 28(23): 7778.
Laemmli, U.K. 1970. Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature 227(5259):
680-685.
León-López, A., Morales-Peñaloza, A., Martínez-Juárez, V.M., Vargas-Torres, A., Zeugolis, D.I. & Aguirre-Álvarez, G. 2019. Hydrolyzed collagen-Sources and applications. Molecules 24(22):
4031.
Lund, P.A. & Ellis, R.J.
2008. The chaperone function: Meanings and myths. In The Biology of Extracellular Molecular Chaperones: Novartis Foundation Symposium
291, edited by Chadwick, D.J. & Goode, J. Chichester, UK: John Wiley
& Sons, Ltd. pp. 23-44.
Marbach, A. & Bettenbrock, K. 2012. lac operon induction in Escherichia coli: Systematic comparison of IPTG and
TMG induction and influence of the transacetylase LacA. Journal
of Biotechnology 157(1): 82-88.
McKeen, H.D., McAlpine, K.,
Valentine, A., Quinn, D.J., McClelland, K., Byrne, C., O’Rouke,
M., Young, S., Scott, C.J., McCarthy, H.O., Hirst, D.G. & Robson, T. 2008.
A novel FK506-like binding protein interacts with the glucocorticoid receptor
and regulates steroid receptor signaling. Endocrinology 149(11):
5724-5734.
Monaghan, P. & Bell, A.
2005. A Plasmodium falciparum FK506-binding protein (FKBP) with
peptidyl–prolyl cis–trans isomerase and chaperone activities. Molecular
and Biochemical Parasitology 139(2): 185-195.
Muhammad, A.B., Azman, E.N., Eddie, N.A.,
Azmi, N.I., Yee, V.C.T. & Idris, Z.M. 2022. The rise of Plasmodium knowlesi cases: Implication to Malaysia’s malaria-free
status. Asian Pacific Journal of Tropical Medicine 15(8):
337-338.
Muralidharan, V., Oksman,
A., Pal, P., Lindquist, S. & Goldberg, D.E. 2012. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome
during malarial fevers. Nature Communications 3(1): 1310.
Nosaki, S. & Miura, K. 2021. Transient expression of
recombinant proteins in plants. Methods in Enzymology 660: 193-203.
Massachusetts: Academic Press.
Okita, N., Higami, Y., Fukai, F., Kobayashi, M., Mitarai,
M., Sekiya, T. & Sasaki, T. 2017. Modified Western blotting for insulin and
other diabetes-associated peptide hormones. Scientific Reports 7(1):
6949.
Parsy, C.B., Chapman, C.J., Barnes, A.C., Robertson, J.F.
& Murray, A. 2007. Two-step method to isolate target recombinant protein
from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. Journal of
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 853:
314-319.
Rajan,
S. & Yoon, H.S. 2022. Structural insights into Plasmodium PPIases. Frontier Cellular Infection Microbiology 12:
931635.
Rasmussen, C., Alonso, P. & Ringwald, P. 2022. Current
and emerging strategies to combat antimalarial resistance. Expert
Review of Anti-infective Therapy 20(3): 353-372.
Rasmussen, T., Kasimova, M.R., Jiskoot, W. &
van de Weert, M. 2009. The chaperone-like protein
α-crystallin dissociates insulin dimers and hexamers. Biochemistry 48(39):
9313-9320.
Ricard-Blum, S. 2011. The
collagen family. Cold Spring Harbor Perspectives in Biology 3(1): a004978.
Robichon,
C., Luo, J., Causey, T.B., Benner, J.S. & Samuelson, J.C. 2011. Engineering Escherichia coli BL21 (DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity
chromatography. Applied and Environmental Microbiology 77(13):
4634-4646.
Schneider, C.A., Rasband, W.S. & Eliceiri,
K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature
Methods 9(7): 671-675.
Silvester, J., Lindang, H.U.A., Chin, L.P., Ying, L.T. & Budiman, C. 2017. Structure and molecular dynamic
regulation of FKBP35 from Plasmodium knowlesi by structural homology modeling and electron
microscopy. Journal of Biological Sciences 17(8): 369-380.
Tan, Y.S., Zhang, R.K., Liu, Z.H., Li, B.Z.
& Yuan, Y.J. 2022. Microbial adaptation to enhance stress tolerance. Frontiers
in Microbiology 13: 888746.
Thommen, B.T., Dziekan, J.M., Achcar, F., Tjia, S., Passecker, A., Buczak, K., Gumpp, C., Schmidt,
A., Rottman, M., Grüring,
C., Marti, M., Bozdech, Z. & Brancucci,
N.M. 2023. Genetic validation of PfFKBP35 as an antimalarial drug target. Elife 12: RP86975.
Tong, M. & Jiang, Y.
2016. FK506-binding proteins and their diverse functions. Current
Molecular Pharmacology 9(1): 48-65.
Völzke, J.L., Smatty, S., Döring, S., Ewald,
S., Oelze, M., Fratzke, F., Flemig, S., Konthur, Z. &
Weller, M.G. 2023. Efficient purification of polyhistidine-tagged
recombinant proteins using functionalized corundum particles. BioTech 12(2): 31.
Wang, L., Wang, N., Zhang,
W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R. & Fu, C. 2022. Therapeutic
peptides: Current applications and future directions. Signal
Transduction and Targeted Therapy 7(1): 48.
Wochnik, G.M., Ruegg, J., Abel, G.A.,
Schmidt, U., Holsboer, F. & Rein, T. 2005.
FK506-binding proteins 51 and 52 differentially regulate dynein interaction and
nuclear translocation of the glucocorticoid receptor in mammalian cells. Journal
of Biological Chemistry 280(6): 4609-4616.
Yoon, H.R., Kang, C.B.,
Chia, J., Tang, K. & Yoon, H.S. 2007. Expression, purification, and
molecular characterization of Plasmodium falciparum FK506-binding
protein 35 (PfFKBP35). Protein Expression and Purification 53(1):
179-185.
*Corresponding author; email: cahyo@ums.edu.my
|