a

Sains Malaysiana 54(5)(2025): 1269-1280

http://doi.org/10.17576/jsm-2025-5405-06

 

Interplay between Collagen Hydrolysates and the Ability of FKBP35 from Plasmodium knowlesi in Preventing Insulin Aggregation

 (Interaksi antara Kolagen Hidrolisat dan Keupayaan FKBP35 daripada Plasmodium knowlesi dalam Mencegah Pengagregatan Insulin)

 

NUR ILIYANA ILLANG1, CARLMOND GOH KAH WUN1, MUHAMMAD ARIFIN2 & CAHYO BUDIMAN1,2,*

 

1Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 2Department of Animal Production and Technology, Faculty of Animal Sciences, IPB University, Kampus IPB Darmaga IPB Darmaga Bogort 16680, Indonesia

 

Received: 17 November 2023/Accepted: 10 February 2025

 

Abstract

FK506-binding protein 35 (FKBP35) from Plasmodium knowlesi (Pk-FKBP35) is a potential target for combating the surge in simian malaria cases. While previously speculated to hinder protein synthesis aggregation within parasite cells, this study seeks to experimentally validate the capacity of Pk-FKBP35 to avert protein aggregation. Additionally, it aims to examine the influence of collagen hydrolysates (CH) on this ability. Initially, Pk-FKBP35 was overexpressed in Escherichia coli BL21(DE3) and subsequently purified. To assess its capacity for preventing aggregation, a dithiothreitol (DTT)-induced insulin aggregation assay was conducted and observed via SDS-PAGE. The findings showed a concentration-dependent inhibition by Pk-FKBP35 against DTT-induced insulin aggregation. At the concentration of 0.75 mg/mL of Pk-FKBP35, the amount of soluble insulin was increased to about 5-fold higher. Interestingly, in the presence of FK506, Pk-FKBP35's ability to prevent insulin aggregation remains intact. Since FK506 is known to specifically bind to the catalytic domain of Pk-FKBP35, this suggests that the region responsible for the protein's aggregation prevention activity is independent from the catalytic domain.  Moreover, when coupled with CH derived from bovine, bone broth, fish, and swine, Pk-FKBP35's effectiveness in preventing DTT-induced insulin aggregation was attenuated, albeit to varying degrees. Notably, swine and bone broth CH exhibited superior inhibition of aggregation prevention compared to bovine and fish CH. This study validates Pk-FKBP35's capability to impede protein aggregation, showcasing a promising potential for inhibition by CH, particularly those sourced from swine and bone broth.

Keywords: Collagen hydrolysate; FKBP35; peptidyl-prolyl cis-trans isomerase (PPIase); Plasmodium knowlesi; zoonotic malaria

 

Abstrak

Protein pengikat-FK506 daripada Plasmodium knowlesi (Pk-FKBP35) dipercayai berpotensi untuk dibangunkan sebagai ubat anti-malaria bagi melawan kes zoonotik malaria yang semakin membimbangkan. Walaupun sebelum ini dikatakan dapat menghalang penggumpalan semasa sintesis protein dalam sel parasit, kajian ini bertujuan untuk mengesahkan secara uji kaji keupayaan Pk-FKBP35 untuk mencegah penggumpalan protein. Selain itu, kajian ini juga bertujuan untuk meneliti pengaruh hidrolisat kolagen (CH) terhadap keupayaan tersebut. Dengan itu, Pk-FKBP35 diekspresikan secara berlebihan di dalam E. coli (BL21) dan ditulenkan. Keupayaan menghalang penggumpalan protein diperhatikan menggunakan insulin sebagai model substrat yang dinyahaslikan menggunakan ditiotreitol (DTT) dan dipantau secara visual melalui elektroforesis gel natrium dodesil sulfat-poliakrilamida (SDS-PAGE). Keputusan menunjukkan bahawa Pk-FKBP35 berupaya menghalang penggumpalan insulin secara kebergantungan kepekatan. Bilangan insulin yang larut meningkat lima kali ganda dengan kehadiran 0.75 mg/mL Pk-FKBP35. Menariknya, kehadiran FK506 tidak menjejaskan kemampuan Pk-FKBP35 untuk mencegahpenggumpalan insulin. Memandangkan FK506 diketahui melekat secara khas pada domain katalitik Pk-FKBP35, ini menunjukkan bahawa kawasan yang bertanggungjawab untuk aktiviti pencegahanpenggumpalan protein adalah berasingan daripada domain katalitik tersebut. Dalam masa yang sama, kehadiran CH daripada lembu, tulang, ikan dan khinzir berupaya mengurangkan pencegahan penggumpalan insulin yang dinyahaslikan menggunakan DTT dengan kadar yang berbeza. CH khinzir dan tulang mencegah keupayaan Pk-FKBP35 lebih baik berbanding CH daging dan ikan. Kajian ini membuktikan Pk-FKBP35 mempunyai keupayaan mencegah penggumpalan protein dan keupayaan ini boleh direncatkan dengan kehadiran CH.

Kata kunci: FKBP35; hidrolisat kolagen; isomerase cis-trans peptidil-prolil (PPIase); Plasmodium knowlesi; zoonotik malaria

 

REFERENCES

Adiyoga, R., Arief, I.I., Budiman, C. & Abidin, Z. 2022. In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. Food Science and Technology 42: e87221.

Afiyah, D.N., Arief, I.I. & Budiman, C. 2015. Proteolytic characterization of trimmed beef fermented sausages inoculated by Indonesian probiotics: Lactobacillus plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4. Advance Journal of Food Science and Technology 1: 27-35.

Alag, R., Balakrishna, A.M., Rajan, S., Qureshi, I.A., Shin, J., Lescar, J., Grüber, G. & Yoon, H.S. 2013. Structural insights into substrate binding by Pv FKBP35, a peptidylprolyl cis-trans isomerase from the human malarial parasite Plasmodium vivax. Eukaryotic Cell 12(4): 627-634.

Alag, R., Qureshi, I.A., Bharatham, N., Shin, J., Lescar, J. & Yoon, H.S. 2010. NMR and crystallographic structures of the FK506 binding domain of human malarial parasite Plasmodium vivax FKBP35. Protein Science 19(8): 1577-1586.

Amir, A., Cheong, F.W., Ryan de Silva, J., Liew, J.W.K. & Lau, Y.L. 2018. Plasmodium knowlesi malaria: Current research perspectives. Infection and Drug Resistance 11: 1145-1155.

Asai, T. 2020. Contents, structure, and functions of collagen-derived peptides in human blood after ingestion of collagen hydrolysate and gelatin. PhD Dissertation. Kyoto University (Unpublished).

Atack, T.C., Raymond, D.D., Blomquist, C.A., Pasaje, C.F., McCarren, P.R., Moroco, J., Befekadu, H.B., Robinson, F.P., Pal, D., Esherick, L.Y., Ianari, A., Niles, J.C. & Sellers, W.R. 2020. Targeted covalent inhibition of Plasmodium FK506 binding protein 35. ACS Medicinal Chemistry Letters 11(11): 2131-2138.

Bell, A., Wernli, B. & Franklin, R.M. 1994. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. Biochemical Pharmacology 48(3): 495-503.

Budiman, C., Bando, K., Angkawidjaja, C., Koga, Y., Takano, K. & Kanaya, S. 2009. Engineering of monomeric FK506‐binding protein 22 with peptidyl prolyl cis‐trans isomerase: Importance of a V‐shaped dimeric structure for binding to protein substrate. The FEBS Journal 276(15): 4091-4101.

Budiman, C., Koga, Y., Takano, K. & Kanaya, S. 2011. FK506-binding protein 22 from a psychrophilic bacterium, a cold shock-inducible peptidyl prolyl isomerase with the ability to assist in protein folding. International Journal of Molecular Sciences 12(8): 5261-5284.

Budiman, C., Tadokoro, T., Angkawidjaja, C., Koga, Y. & Kanaya, S. 2012. Role of polar and nonpolar residues at the active site for PPIase activity of FKBP22 from Shewanella sp. SIB1. The FEBS Journal 279(6): 976-986.

Budiman, C., Wun, C.G.K., Chin, L.P., Razali, R. & Leow, T.C. 2020. Reassessment of the catalytic activity and substrate specificity of FKBP35 from Plasmodium knowlesi using protease-free assay. Borneo International Journal of Biotechnology (BIJB) 1: 125-143.

Bumagina, Z., Gurvits, B., Artemova, N., Muranov, K. & Kurganov, B. 2010. Paradoxical acceleration of dithiothreitol-induced aggregation of insulin in the presence of a chaperone. International Journal of Molecular Sciences 11(11): 4556-4579.

Chin, A.Z., Maluda, M.C.M., Jelip, J., Jeffree, M.S.B., Culleton, R. & Ahmed, K. 2020. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. Journal of Physiological Anthropology 39(1): 1-9.

Chin, W., Contacos, P.G., Collins, W.E., Jeter, M.H. & Albert, E. 1968. Experimental mosquito-transmission of Plasmodium knowlesi to man and monkey. American Journal of Tropical Medicine and Hygiene 17(3): 355-358.

Das, A., Shah, M. & Saraogi, I. 2022. Molecular aspects of insulin aggregation and various therapeutic interventions. ACS Bio. & Med. Chem. Au. 2(3): 205-221.

Fanghanel, J. & Fischer, G. 2004. Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front in Bioscience 9: 3453-3478.

Fatih, F.A., Staines, H.M., Siner, A., Ahmed, M.A., Woon, L.C., Pasini, E.M., Kocken, C.H., Singh, B., Cox-Singh, J.  & Krishna, S. 2013. Susceptibility of human Plasmodium knowlesi infections to anti-malarialsMalaria Journal 12: 425.

Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F.X. 1989. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206): 476-478.

Furutani, M., Ideno, A., Iida, T. & Maruyama, T. 2000. FK506 binding protein from a thermophilic archaeon, Methanococcus thermolithotrophicus, has chaperone-like activity in vitroBiochemistry 39(2): 453-462.

Ghartey-Kwansah, G., Li, Z., Feng, R., Wang, L., Zhou, X., Chen, F.Z., Xu, M.M., Jones, O., Mu, Y., Chen, S., Bryant, J., Isaacs, W.B., Ma, J. & Xu, X. 2018. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogasterBMC Developmental Biology 18(1): 7.

Goh, C.K.W., Silvester, J., Wan Mahadi, W.N.S., Chin, L.P., Ying, L.T., Leow, T.C., Kurahashi, R., Takano, K. & Budiman, C. 2018. Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesiProtein Engineering, Design and Selection 31(12): 489-498.

Goodwin, T.W. & Morton, R.A. 1946. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochemical Journal 40(5-6): 628-632.

Hanifah, R., Arief, I.I. & Budiman, C. 2016. Antimicrobial activity of goat milk yoghurt with addition of a probiotic Lactobacillus acidophilus IIA - 2B4 and roselle (Hibiscus sabdariffa L) extract. International Food Research Journal 23(6): 2638-2645.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L. & Townshend, J.R.G. 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160): 850-853.

Helton, L.G. & Kennedy, E.J. 2020. Targeting Plasmodium with constrained peptides and peptidomimetics. IUBMB Life 72(6): 1103-1114.

Hua, Q.X. & Weiss, M.A. 2004. Mechanism of insulin fibrillation: The structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. Journal of Biological Chemistry 279(20): 21449-21460.

Huynh, K. & Partch, C.L. 2015. Analysis of protein stability and ligand interactions by thermal shift assay. Current Protocols in Protein Science 79(1): 28-29.

Kang, C.B., Feng, L., Chia, J. & Yoon, H.S. 2005. Molecular characterization of FK-506 binding protein 38 and its potential regulatory role on the anti-apoptotic protein Bcl-2. Biochemical and Biophysical Research Communications 337(1): 30-38.

Kang, C.B., Hong, Y., Dhe-Paganon, S. & Yoon, H.S. 2008. FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals 16(4): 318-325.

Kurniaty, N., Maharani, R., Hidayat, A.T. & Supratman, U. 2023. An overview on antimalarial peptides: Natural sources, synthetic methodology and biological properties. Molecules 28(23): 7778.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.

León-López, A., Morales-Peñaloza, A., Martínez-Juárez, V.M., Vargas-Torres, A., Zeugolis, D.I. & Aguirre-Álvarez, G. 2019. Hydrolyzed collagen-Sources and applications. Molecules 24(22): 4031.

Lund, P.A. & Ellis, R.J. 2008. The chaperone function: Meanings and myths. In The Biology of Extracellular Molecular Chaperones: Novartis Foundation Symposium 291, edited by Chadwick, D.J. & Goode, J. Chichester, UK: John Wiley & Sons, Ltd. pp. 23-44.

Marbach, A. & Bettenbrock, K. 2012. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacAJournal of Biotechnology 157(1): 82-88.

McKeen, H.D., McAlpine, K., Valentine, A., Quinn, D.J., McClelland, K., Byrne, C., O’Rouke, M., Young, S., Scott, C.J., McCarthy, H.O., Hirst, D.G. & Robson, T. 2008. A novel FK506-like binding protein interacts with the glucocorticoid receptor and regulates steroid receptor signalingEndocrinology 149(11): 5724-5734.

Monaghan, P. & Bell, A. 2005. A Plasmodium falciparum FK506-binding protein (FKBP) with peptidyl–prolyl cis–trans isomerase and chaperone activities. Molecular and Biochemical Parasitology 139(2): 185-195.

Muhammad, A.B., Azman, E.N., Eddie, N.A., Azmi, N.I., Yee, V.C.T. & Idris, Z.M. 2022. The rise of Plasmodium knowlesi cases: Implication to Malaysia’s malaria-free status. Asian Pacific Journal of Tropical Medicine 15(8): 337-338.

Muralidharan, V., Oksman, A., Pal, P., Lindquist, S. & Goldberg, D.E. 2012. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nature Communications 3(1): 1310.

Nosaki, S. & Miura, K. 2021. Transient expression of recombinant proteins in plants. Methods in Enzymology 660: 193-203. Massachusetts: Academic Press.

Okita, N., Higami, Y., Fukai, F., Kobayashi, M., Mitarai, M., Sekiya, T. & Sasaki, T. 2017. Modified Western blotting for insulin and other diabetes-associated peptide hormones. Scientific Reports 7(1): 6949.

Parsy, C.B., Chapman, C.J., Barnes, A.C., Robertson, J.F. & Murray, A. 2007. Two-step method to isolate target recombinant protein from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 853: 314-319.

Rajan, S. & Yoon, H.S. 2022. Structural insights into Plasmodium PPIases. Frontier Cellular Infection Microbiology 12: 931635.

Rasmussen, C., Alonso, P. & Ringwald, P. 2022. Current and emerging strategies to combat antimalarial resistance. Expert Review of Anti-infective Therapy 20(3): 353-372.

Rasmussen, T., Kasimova, M.R., Jiskoot, W. & van de Weert, M. 2009. The chaperone-like protein α-crystallin dissociates insulin dimers and hexamers. Biochemistry 48(39): 9313-9320.

Ricard-Blum, S. 2011. The collagen family. Cold Spring Harbor Perspectives in Biology 3(1): a004978.

Robichon, C., Luo, J., Causey, T.B., Benner, J.S. & Samuelson, J.C. 2011. Engineering Escherichia coli BL21 (DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography. Applied and Environmental Microbiology 77(13): 4634-4646.

Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675.

Silvester, J., Lindang, H.U.A., Chin, L.P., Ying, L.T. & Budiman, C. 2017. Structure and molecular dynamic regulation of FKBP35 from Plasmodium knowlesi by structural homology modeling and electron microscopy. Journal of Biological Sciences 17(8): 369-380.

Tan, Y.S., Zhang, R.K., Liu, Z.H., Li, B.Z. & Yuan, Y.J. 2022. Microbial adaptation to enhance stress tolerance. Frontiers in Microbiology 13: 888746.

Thommen, B.T., Dziekan, J.M., Achcar, F., Tjia, S., Passecker, A., Buczak, K., Gumpp, C., Schmidt, A., Rottman, M., Grüring, C., Marti, M., Bozdech, Z. & Brancucci, N.M. 2023. Genetic validation of PfFKBP35 as an antimalarial drug target. Elife 12: RP86975.

Tong, M. & Jiang, Y. 2016. FK506-binding proteins and their diverse functions. Current Molecular Pharmacology 9(1): 48-65.

Völzke, J.L., Smatty, S., Döring, S., Ewald, S., Oelze, M., Fratzke, F., Flemig, S., Konthur, Z. & Weller, M.G. 2023. Efficient purification of polyhistidine-tagged recombinant proteins using functionalized corundum particles. BioTech 12(2): 31.

Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R. & Fu, C. 2022. Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy 7(1): 48.

Wochnik, G.M., Ruegg, J., Abel, G.A., Schmidt, U., Holsboer, F. & Rein, T. 2005. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. Journal of Biological Chemistry 280(6): 4609-4616.

Yoon, H.R., Kang, C.B., Chia, J., Tang, K. & Yoon, H.S. 2007. Expression, purification, and molecular characterization of Plasmodium falciparum FK506-binding protein 35 (PfFKBP35). Protein Expression and Purification 53(1): 179-185.

 

*Corresponding author; email: cahyo@ums.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next